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..\hsInICt Thc sh.:ar-Iag modd is applicd II' a nl\lIwlayn. unidir.:ctional.lihcr-rcllll'orccd cOlllpositc
load.:d ill Icnsi,"1. Th.: monolaycr contains an inlimlc nUlllhcr "I' paralld libel'S. with an arhitrary
I1Inllhl'r "I' thcm hroh'n simultanc"usly. Whik tho: tihers aro: n1l1ddo:d as Iinl'ar daslil'. a Iino:ar
\isc'"daslll: c"nslituti\l' law is assumcd 1'''1' th.: matI''' mato:ri,d, Thl' timo: o:\'\,luti"n "I' tho: "vo:rstro:ss
proliks ill th.: lihl'rs and matri, ncar hro:aks is ,kt.:rnulIl·d alld th.: t1l1ll; ,kp':lIlknco: "I' tho: ..:Ir':':livc
I"ad Iransl<:r knl,:th is .:akulat<:d, F,a.:t d"so:d-I'''nll ",Iuti,,"s as wdl as al'l'r".,illlatc o:v,duali,,"s
"I' tho: ah"vo: qualltitics ,\1'0: ~ivo:n 1'''1' a p,,\wr.law .:r<:l·p nllllplialll:': Ill"dd. suitahk 1'''1' Ill"st l'p",y
tho:rn1l1scllinJ; resins as l1Iatri, Illat<:rials, Tho:sc rcsults an: als" 1·,tO:lIlkd t" Iho: case "f s.:qu':lltial
hr.:aks in tinl': alld Ih.: ':,ISe "f all ideali/.:d i"dl·"tati"" t<:st.

I. I NTIWI )\)CIION

Tht: sht:ar-Iag 1l10dd 1'01' a unidirt:~tional wmpositt: was lkwlopt:d by Ht:dgt:pt:th (1l)(11) as
an attt:mpt to des~ribt: tht: stress fidds nt:ar brokt:n fibt:rs, It is a simplifit:d mi~romt:dlanil:s

modd 1'01' whi~h dl)sed-fonn solutions l:an bt: obtaint:d. In Ikdgt:pdh's analysis an array
of paralld. t:qually spal:ed libt:rs of infinitt: kngth, forming a nlOnolayt:r is l:onsidered. Tht:
monolayer indudt:s an infinite number of libers with a duster of them broken (Fig. I) and
is loaded by uniformly distributed tensile tral:tions in the Jirel:tion or the fibers. Both fibt:r
and matrix materials are assumed to be linear da·;til:. The simplifil:ation introdul:ed by the
sht:ar-Iag modd is tht: dt:l:Ollpling bt:twt:t:n the mt:t:hanisms that respond to sht:ar and
normal stresses in tht: t:omposite. It is thus assumed that the libel'S ,done be,tr the Illlnnal
strt:sses along the fiber dirt:ction, whik lht: matrix malerial ads only as a shear transfer
medlanism that owrloads the adjacent fibers ill tt:nsion whent:ver a libel' breaks.

Tht: influenl:t: runl:tion tedllliqut: W,tS ust:d for tht: solution or the above problt:m <lml
tht: t:xplil:it t:valuation of tht: ovt:r1oad wdlit:it:nts or lht: intal:t libel'S dUt: to fiber breaks
was givt:n by I kdgepeth ((961). Clost:d-rorm solutions in tt:rms or Bessel and Wt:bt:r
runl:tiolls for lht: owrload ,tnd displal:t:ment fidds of tht: fibers were rt:ported by Fidltt:r
(1969, 1970), who also looked into lhe problem of mort: than ont: group of brt:aks. A later
work by fkdgt:pt:lh and V,ln Dyke (1967) illwrporatt:d an dastil: perfel:tly plastil: modd
for tht: malrix Ilt:lteri<ll. In ,I subseljuent work V.1ll Dyke 'IllU Hedgt:pt:lh (19(19) <lsslll1lt:d
lhat the matrix fails l:omplctdy wht:n a l1laximum sht:ar stress is real:hed. A modified version
or Hedgepeth's shear-lag analysis was undt:rtaken by Eringt:n and Kim (\974), who took
into account tht: normal stresses in tht: nwtrix trans\t:rsely to lhe diredion or tht: fiot:rs.
Along the same lines was the an.llysis of Gort:e and Gross (1979) with the additional
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Fig, I. A uniJin:ctit>nal I.'t>mposit.: with an intinit.: numocr t>f para lid tib.:rs load.:d in t.:nsion
umlc>rmly. with (~S + I) brt>k.:n fiocrs along th.: r-a"is,

inclusion of longitudinal yielding and splitting of the matrix and later on an extension to
the three-dimensional case (Goree and Gross. 1980). Comparisons of the predictions of the
shear-lag model with three-dimensional tinite elemcnt calculations were done by Reedy
(llJ84). He found excellent agreement between the two methods for the tiber strcss con­
centrations in a Kevlar epoxy monolayer ti.lr load levels that do not I.:ause matrix yielding.

In the present work we analyze the time response predictcd by the shear-lag model of
a unidirl.:l.:tillllal. nlllnolayer composite with an infinite number of parallel fibers 10(lded in
tl.:nsion in the din:dion of the liners. by assuming a time-dependent constitutive model for
thl.: matrix material. We take the matrix to he linear visl.:oelastil.:. and as a spel.:iall.:ase we
investigate the consequenl.:es ofa power-law. time-depl.:ndent, I.:reep I.:ompliall\;e on the time
evolution of the overst ress proti les a round broken fi hers. Sudl a power-Iaw I.:reep complianl.:e
is I.:ommonly used to model the time response of epo,,<y thermosclting resins. whidl (\re
orten used as the matrix material for non-mclallil.: I.:omposites (Pomeroy. 1(78). A linear
viswelastil.: model for the matrix has previously been used by Lifshitz and Rotem (1970)
in their statistil.:al theory of failure for I.:omposi tes. where Sdlapery's approximate tedlllique
was used to obtain the time-dependent solution ofa shear-lag model that lumped all broken
libers into a single broken fiher.

In Sel.:tion 2 the formulation and the method of solution of the shear-lag problem is
presented for a unidirel.:tional composite under tension with broken elastic fibers and
visl.:oelastil.: matrix. In Section 3 the time evolution of overstress profiles in the intal.:tlibers.
the shear stresses in the matrix and the ctl'el.:tive load transfer length an: explil.:itly presented
for a matrix that has a power-law I.:reep eomplianl.:e. Approximate transform inversions
and some asymptotil.: results arc given in Sel.:tion 4. A brief disl.:ussion of the I.:ase of
sequential breaks in time is pursued in Sel.:tion 5. In Sel.:tion 6 we apply the shear-lag model
to analyze the stn:ss relaxation in an indentation experiment. In these experiments the
indentor imposes wnslant displal.:ement boundary I.:onditions on the broken fiber. while
the loads in the intal.:t fibers rdax with time as a result of the viswelastil.: properties of the
m(ltrix.

~, HJRMULATION OF TIlE SIIEAR-I.t\(j PROBLEM

The model of a unidirel.:tionallamina is shown in Fig. I. where all fibers arc identical
and parallel to the X-axis and have an equall.:enter-line sp(lI.:ing. The lamina is I.:onsidered
to be a two-dimensional infinite region with an infinite number of fibers. out of whil.:h
(2.V+ I) neighboring fibers are broken along the r-axis. In a reall.:ase the size of the lamina
is finite. but the diameter of the fibers D. (IS well as the fiber spal.:ing arc small compared to
the length of the fibers. Both the X- and r-axes arc axes of symmetry for the lamina in
terms of geometry and loading and for this reason only one quarter of the lamina is shown
in Fig. I. The external loading is uniform tension applied in the direction of the fibers.
whidl arc assumed to be the only tensile load bearing members. This is a justifiable
assumption for most polymeric matrix composites because the Young's modulus of the
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Fig. ~. Equilibrium in the X-direction of an infinitesimal element of the nth fiber with its surrounding
matrix.
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matrix is usually one or more orders of magnitude less than the axial Young's modulus of
the fibers.

The mechanism of the shear-lag model is a highly idealized one. At zero time the fibers
are under constant tensile stress 4P .:lnD: along the fiber direction and the matrix. material
is assumed to be completely relaxed. At time T = 0+. (2N+ I) fibers are broken causing
overloading of the intact fibers through shear stress in the matrix. The overload region
grows with time .tS a result of the viscoelastic properties of the matrix. We are interested in
calculating the time evolution of the stress fields near the breaks in the fibers and the matrix.

A free body diagram. indicating equilibrium of forces in the X-direction. of an infini­
tesimal portion of the nth liber together with its surrounding matrix. is shown in Fig. 2
under the shear-lag approximation. fly r n we denote the mean value of the normal stress
fT.\ \ along the liber direction averaged over its cross-section. while Tn and Tn," I are the mean
values of the shear stresses fT n in the matrix. avcraged over the eJlectiL·(' thickness of the
lamina IJ. The ell"cctive thickness is usually taken to be equal to the dhllneter of the fibers.
namely B ~ D. Detailed discussion on the selection of B is given by Reedy (19X4). Following
his suggestion, we also take the shcar traflS/i-r \l'Mth II to be given by II :;;;; C -nD/4, where
C is the fiber spacing. so that the cross-section, A, of the fibers remains nD:/4. If we neglect
inertial forces, equilibrium of forces in the X-direction reduces to

ilL.
A (~X +B(T•• 1-T,,) =0, V". ( I )

The above equations imply that the variation of the norm.llload p. == AL. transfered along
a liber is equilibrated by the difference in the shear stresses applied by the matrix. on both
sides of the fiber. Note that L. is much larger than T•• I. T. and the normal stresses in the
matrix, for a typical polymeric matrix composite. The derivative of L. with respect to X,
however, is of the same order as the shear stress in the matrix., and this is what eqn (I)
implies. We have also neglected the derivative with respect to X of the mean value of the
normal stress O"rx in the matrix because it is much smaller than both terms in eqn (I), even
though the mean normal stress itself is of the same order as Tn.

Upon specifying constitutive relations for the matrix and fibers, the above set ofequations
becomes a system of differential-dilference equations for the determination of the dis­
placement fields C. of the cross-sections of the fibers along their axes. as functions of
position X and time T. In the present work we assume that the fibers are linear clastic,
namely

(~1ljn(X. n
p.(X. n = AE ~r

l-.
(2)

where E is the axial Young's modulus of the fibers and U. the displacement in the X­
direction of the "th fiber. The matrix material is taken to be linear viscoelastic in shear.
that is
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(3)

where G( T) is the rela:\ation modulus and ,'.(X. T) the shear strain in the matri:\ and is
appro:\imated by

I"~ ~ (U. - U. _I) H. (4)

Equation (4) can also be obtained by neglecting the term (\( C'. _ I + V.rl 2 in the work of
Eringen and Kim (1974). where V. is the displacement in the r-direction of the lith fiber.
Substitution ofeqn (4) into eqn (3) results in

(5)

We nondimcnsionalize thc timc variable by dividing T by some characteristic timc J~

of thc matrix material. to be found by creep cxperiments. so that 1 == TlT<, Wc also dc/ine
a normalized rela:\ation modulus ~~(/) == G(tTJ/Go• where Go is the instantancous clastic
shear modulus of the m;ttrix material. (In this work lower case letters and script letters
denote dimensionless quantities. while upper case letters stand for dimensional quantitics.)
Substitution of eqns (2) and (5) into cqn (I). yields second-order dilferential-dilferencc
equations for the determination of Un. namely

(6)

If the solution of eqn (6) is found. substitution of U" into eqn (5) will yield the shear stress
in the matrix J:, and substitution into eqn (2) will yield the normal loads in the fibers. X
;1I1d U. are normalized so that the field equations and the boundary and initial conditions
become independent of the material parameters. By defining x == X,'.\'< == X'y(AEII/GJJ)
and /1,,(.\. t) == U,,(X. T)iJ(P: IIjGc AElJ). eqn (6) becomes

The boundary conditions arc given by

I. V". X -.,..;. 1 > 0

t'lI" = o. Inl :::; N. x = O. 1>0
(1 X

/I" = o. 1"1> N. x = O. 1>0

while the initial conditions are

/I. = X. V". x ~ O. 1 = 0,

'lin. (7)

(Sa)

(8b)

(9)

To avoid unbounded displacemcnt fields in the analysis. the transformation
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is introduced. which. after its substitution into eqns (7)-(9). results in the following field
equations. boundary and initial conditions:

211'
-:;~ = O. 'VII. X -+ X. / > 0
ex

- I. 1111 ~ N. x = O. t > 0

11'" = o. 1111 > N. x = O. t > 0

11'" = O. 'VII. x;;<: O. t = O.

( II )

( I~a)

( I~b)

( I~c)

( 13)

Notice that the t1dd equations remain unch.mged in form. The change in the boundary
conditions has altered the original problem into a new one. in which there are no loads at
inlinity and there are only compressive loads applied on the broken fibers suddenly at
t = O' • which open up the hreaks as t grows.

The above equations C.1Il he solved by using the method of Laplace transform. If~?(s)

and Ii" (.\'. ,1') denote the Laplace transforms of ~.,(t) and 11',,(X. t). respectively. the Laplace
transforms of eqns ( II) and (I ~). upon using eqn (13). become

( 14)

( 15)

( ..... "',,
1111 ~ N. x = 0 ( 16a)

Ii'" = o. 1111 > N. x = o. ( 16b)

\\\: have thus transformed the original viscoelastic problem into an elastic shear-lag problcm
(corn:spondcncc principII:. Christensen (19H2)). We will follow here the.: mcthodology pre.:­
scnte.:d by Eringen and Kim (1974) and used also by Gorce and Gross (1979) for the.: solution
of the.: elastic shear-lag problem. which is a dual integral equation technique. However. one.:
can also use the inl1uence function technique developed by Hedgepeth (1961).

Wc can reduce eqn (14) to ,I single differential equation by introducing the linite cosine
transform (Churchill. 1972). i.e.

Ii' ."
'i' = II + - 2: Ii'" eos (110). 0 < 0 < IT

IT 1t".1

with the inversion formula given by

Ii'" = f" Ii' cos (110) dO. 11;;<: 0
II

( 17a)

(17h)

where Ii' == li'(x..dJ). Ii'" == Ii'" (x. s). By summing cqns (14) with II running from - CfJ to

SAS ;Z5: I-D
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x. after having multiplied by cos (nfl). and by taking into account the symmetry
II,,(X• .1') = II' ,,(x• .1'). it is found that Il'satisfies

( 18)

The resulting simplification in the field equations has shifted the difficulty into the boundary
conditions. which turn out to be integral equations. namely

('II"

~-- = O. x -- x
('X

( 19)

0:::; 1/ :::; N. x = 0 (20a)

f"II' cos (nO) dO = O. N < 1/ < 'A.. X = O.
II

A solution to eqn (18) that satisfies boundary condition (19) is given by

II' = {(.I'. (/) exp [- 2 sin (O/2)xJ(.~~;J(s»1

(20b)

(21 )

for sonH': f(s. 0). Suostitution of eqn (21) into eqns (20a) and (20b) yields the conditions

f" I
((.1'.0) sin (Oi2) cos (nil) dO = _. 0:::; n :::; N

II ' 2.1'\/(.I'~"(.I'))

f"f(.I'. 0) cos (nil) dll = O. N < 1/ < '1~
II

for((.I'.II). If we let

,
f(.I'. II) == L /1m cos (IIlO)/[2.1'J(.I'~;J(.I'»)1

"' .... 11

conditions (22a) for the broken fibers reduce to

±h", f" sin (0/2) cos (nil) cos (IIlO) dO = I. 0:::; n :::; N
", ..... CI II

(22a)

(220)

(23)

while conditions (22b) for the intact fibers arc satisfied identically. The complete satisfaction
of the boundary conditions reduces then to the solution of the algebmic system (23) of
(N + I) equations. for the determination of the (N + I) unknown coefficients h",.
III = O. 1.2..... N. The solution to the transformed problem is found by substituting II' from
elln (21) into eqn (17b) and is given by the following expression:

.v h f"II',,(X• .I') = L. "'.., exp [-2 sin (1I/2)J(.I'~;J(.I'»)xl cos (IIlO) cos (I/O) dO.
",_II 2.1',\I(.I'~IJ(.I'» II

(24)

The inversion of the Laplace transforms of II'" will result in 1I',,(x. I). The difficulty of the
inversion will mainly depend on the selection of the constitutive model (i.e. ~;J(s)) for the
viscoelastic matrix.

A clarifying remark regarding the number of broken fibers is mentioned at this point.
We have assumed that the number of breaks is an odd integer. namely (2N + I). and as a
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consequence we have used the finite cosine transform (17). taking into account the symmetry
ofli·.(li·. = IL.). We could easily model any number of breaks by using the finite exponential
transform (Churchill. 1972). which reduces to the finite cosine transform whenever
Ii'. = Ii' _•. The only change in the previous analysis is that 1(5. 0) is now given by

:v
L: b",/[:!s..,/(.5':~(s»] exp ( - im(}).

",= -.w

where the total number of breaks is (M+N+ I) and the algebraic system (n) involves
(M +N + I) unknown coefficients b",.

The important quantities in the analysis of shear-lag models are the overloads in the
fibers near breaks and the shear stresses in the matrix. The non-dimensional loads in the
fibers. defined by P.(x, t) == p.(x;'C tTel/ P ~. can be found by substituting lI'.(x. t) from eqn
(:!4) into eqn (:!) upon using eqn (10). and they are given by

CII·.(X, t)
P.(x. t) = ~ + I. n;::: O.

ex
(:!5)

The normalized shear stresses !.(x. t) == T.(xXc' tTel/J(P; Gc/AEBfl) between the nth .lOd
the (n - I)th fibers arc evaluated by substitution of II'. (x, t) into eqn (5) (which upon using
eqn (10) yields the normaliz'ltion), .lOd they arc given by

n ;::: I. (:!6)

Another useful quantity. especially for statistical models of failure of composites
(Phoenix et al.• 1988), is the <1reet;I'e load transfer len!lth 1.1" which for the present purposes
is defined as the distance from the breaks in the x-direction, within which the OIwlotitl
(Pv. I - I) of the first unbroken fiber has dropped to zero. Since in the shear-lag model the
load P.v. I of the first intact fiber actually descends to values below P ~ before it decays
exponentially to P, as x -- 00, we define 1.1' as the distance from the breaks at which p.v • I

crosses P,. In this case 1.1' or equivalently the normalized ellcctive load transfer length
I, == Lr/J(AEH/GcB) must satisfy the conditions

P.v • I (I" t) = I (27)

In generallr will depend on time because P.v. I depends on time. The so defined I, becomes
a characteristic length for the whole laminate for a given number of breaks (2N + I).

We summarize the results of this section by giving explicit evaluations for the quantities
of interest. The number of broken fibers (2N+ I) is assumed to be known, while the
constants h", arc obtained by solving the linear algebraic system of eqns (23). The fiber
cross-section displacements. fiber axial loads and shear stresses in the matrix arc then
calculated by using eqns (24)-(26), respectively. These equations acquire the following
explicit evaluations:

'" l~1I·.(X.t) = L: h", I. I{exp [-2 sin (0/2)J(s':?(s»x)/(2sJ(s':?(s»)}
,,,_ f) U

. cos (mO) cos (/10) dO (28)

pAx. t) = 1- £hm r~ I. ~ I {exp [ - 2 sin (0/2)J(.5':?(s»x]js}
",_0 Jo

. sin (0/2) cos (mO) cos (/10) dO (:!9)
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T,,(X. t) = ±h", f" L I ;exp [-2 sin ({),2),\'(s~f(s»x]\i(.d'(s) 2.1']
m= (} (J

'cos (ml/)[cos (nll)-cos «(n-I)/J)] dll (30)

what:

(31 )

Y. POWER-LAW CREEP COMPLIANCE MODEL FOR THE MATRIX MATERIAL

A model that describes closely the viscoelastic properties of commercially used matrix
materials (epoxy thermosetting resins) is a power-law creep compliance model. where th..:
creep compliance is given by

(..12)

In the ahove.( denotes the instantaneous elastic compliance in shear of the matrix material
and T, and :x arc material C(lnstants. J~ is the characteristic time required for the initial
displacement to he douhled. while the exponent :x is usually much smaller than unity. TIl\.'
limit :x -> () corresponds to the elastic case. while:x -> I gives the Maxwell viscoelastil'modd.
The connection hetween the relaxation modulus ~iJ(t) and the l'I"eep compliance j (I) is
expressed through the Laplace transformed quantities (Christensen. 191'2) hy

if (;, = I/.Ie. From eqns (J2) and (,U) the Laplace transform of the relaxation nllldulus is
found to he

_ sy
s~iJ(s) = .

s'+f(:x+I)

By inserting ellns (34) into ellns (2H)-(JO) it is possible to obtain explicit t:valuations
for 1\'".1'" and T" in tams of x and I for dillen;nt values of :x. The inversion of the Laplace
transforms has been obtained by contour integration. We will only report here the solution
for the libel' loads and the shear stresses, while the displact:lllt:nt fields can ht: obtained by
intt:grating t:qn (25). The libel' loads and tht: shear stresses arc found to he

, f"!,,,(x,t) = 1- L h", "(X, 1,0) cos (mO) cos (nO) sin (0;'2) dO
'II .. I) l)

T,,(X, t) = ±h", f" .q(x. I. 0) cos (mO)[cos (nO) -cos «n- I )0)1 dO
III'" n II

(..\5)

1..16)

where the functions "(x, I, 0) and .'f(.\", I, 0) are given in Appendix I\.
Numerical integration of the above formulae has been carried out for hoth 1'" and f".

evcn though they arc related through clln (I). The reason for this is that 1'" is usually the
quantity of primary interest and the numerical evaluation of f" from 1'" involves dilTer­
entiation which should be avoided. NUlllerical integration has heen done hy using a midpoint
Romberg integration technique. with an appropriate change of variables at the singular
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points of the integrands. The results are plotted in Figs 3-6. for one and three broken fibers
and for the first and second intact fibers for various times (:l = 0.1 for all cases). The elastic
solution of Hedgepeth (1961) corresponds effectively to time i I'

From Figs 3 and 4 we notice that at x = 0 we recover the overload coefficients
(P,,(x = O. t). P x == pJ,,-: = o. i» in accordance with the elastic solution of Hedgepeth. The
overload coetlkient of the first intact fiber in a lamina with (~:\'+ I) neighboring breaks as
calculated by Hedgepeth is given by

4'6'8' '(2:\'+4)
3·5·7· ·(2N+3)·

o~ N < x. (37)

The above formula holds for the viscoelastic case as well because the overall static equi­
librium of the composite is not atTected by the viscoelastic properties of the matrix materiul.
This is a consequence of the assumption that the matrix material cunnot sustuin normal
loads in the x-direction and there is no stress reluxution in the fibers as they are assumed
to be elastic. Therefore. the excess load caused by the simultaneous breaks has to be
shared by the neighboring intact fibers and only the stress distributions are atTected by the
viswelastic properties of the matrix matcrial.

Several observations can be drawn from figs 3 and 4. The slope of the load distribution
in the libel'S decreases in absolute value as time increases. resulting in a growth of
the ctli:ctive load transfcr length I, with time (figs 3(a) and 4(a». The overload
[/,,,(x. t) - II undershoots and actually becomes negative before it decays to zero as x -+ r.
1\11' the intact fibers. Glohal equilibriulll of the wlllposite in the x-direction implies that

~ [/,,,(\. t) - II = O. with summation extending to all fibers. Since the negative overloads

in the broken fibers grow with time as a result of the shear stress relaxation in the matrix.
the positive overloads in the intact libel'S increase with time for fixed x. so that global
~'qllilihrium is satisfied (Figs J and 4). This implies that the probahility of failure for the
intal.'t libel'S ncar breaks inl.'reases with time (phoenix ('/ (/1.. (lJXX). The length over whidl
this inneased probability ol.'curs also grows with time. this being the e11i:etive load transti:r
length II'

The relaxation of the shear stress in the matrix can be seen in Figs 5 and 6. The shear­
lag model predicts that the maximum shear strcss occurs at the break points (Figs 5(a) and
()(a». It is orten believed. using symmetry arguments. that the shear stresses in the matrix
should approach zero at the fiber breaks. but as pointed out by others (Goree and Gross.
IlJXO) these stresses need not approach zero at all. Nevertheless. the shear-lag model I.'annot
prcdiet ael:urately the shear stresses in the immediate vicinity of the breaks. The main reason
is tlwt high stress concentrations due to the presence of the crack formed by the broken
libcrs willlcad to dcbonding and relative slip of points in the fiber-matrix intcrface. Note.
however. that sinl:e the libel'S are much stilrer than the matrix (~ 1(0). the region in whidl
the stresses arc perturbed due to tiber breaks is 50 or more fiber diameters. while the shear­
lag analysis might fail to pn:dict correclly the stresses in a small region of one or two fiber
diameters away from the breaks. Even though it is an approximate model. the shear-lag
model I'llI' the viscoelastic case unravels the trcnd in the time dependence of the stress fields
ncar broken fibers.

-I. ASYMPTOTIC EXI'ANSIONS AND API)ROXIMATIONS

The results of the previous section demonstr<ite the time evolution of the overload
zones and the shear stress rel'lx'ltion. They cannot be readily used for engineering purposes
though. because of the complicated form of the solution. We can simplify the results by
inverting the Laphll:e transforms approximately. Approximate inversion techniques have
been employed by Schapery (1962) for viscoelastic stress analysis. Such an approximate
inversion is derived in Appendix B. Schapery (1967) found that accurate results can be
ohtained using the approximation theory as long as:l is small. which is the case in our
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overload vs distance from the break
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shear stress vs distance from the break
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study. It has been found that whenever :x ~ 0.1 the error in the overloads along the fibers
does not exceed I%. Further comparisons with the exact inversion for various :x will be
given later in this section. Notice that the approximate inversion of the Laplace transforms
appearing in eqns (28H30) by using eqn (B9) is equivalent to the substitution of the
approximate inverse Laplace transform of (§(s) into the elastic solution. namely Gc is
repl'lced by G/~(t) in the elastic solution. where (~(t) is obtained from (§(s) upon using eqn
(B9).

The long time behavior of the solution for p,,(x. t) is obtained by applying Watson's
lemma (Carrier et al.. 1966) to l1(x. t. 0) in eqn (35) and the asymptotic expansion of eqn
(35). valid for t - x. is given by

(38)

where the functions "I(n). "~(n). d\(n). "~(n). "5(n) depend only on the fiber under
consideration and ~ == X/I' Z is the similarity variable for large time. Explicit evaluations of
these functions are given in Appendix C. A similar result can also be obtained for the shear
stress in the Illutrix by applying Watson's lemma to .cI(x. t. 0) in eqn (36). The interesting
point here is that the solution for the loads p" along the fibers is approximately self-similar
(the first four terms on the right-hand side ofeqn (38». The plot of I'" vs ~ is approximately
a parabola for largc valucs of time and small values of X (t -'/"). ~ -+ 0). For extremely
large times (:x ~ 0.1) and small X the solution becomes a straight line. for x = 0 the overload
coellicients for the elastic analysis arc recovered. namely l-dl(l) =4;3 for one broken
fiber. etc. The time variahie t enters explicitly into the expression for p" if terms of order
t \, ~ are c\lllsidered. hut for ~ = O( I) the term d,(fI)~t ' is ncgligible for large t. amI the
self-similar character of the solution is not destroyed. This is seen in Fig. 7. where the curves
for till': overload of the first unbroken fiher for times t h rio and t, almost coincide when we
change the ahscissa from.\' to ~.

The asymptotic n.:sult for the overloads of the intact fibers can he used to determine
the time dependence of the ell'cctive Illad transfer length as defined in Section 2. Upon using
eqn (38). the condition 1'\. ,(I,. t) = I gives

X.' to'2

Fig. 7. Load of thc tirst intact liber as .. function of thc simibritv variahlc x /' l for timcs
I, = 1.4X4 x 10'. I, = 3.169 x Ilt. I, = 7.2 x lOi ".
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effective load transfer length vs time
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II = =r /' 2 (39)

where =r is the first positive root of the polynomial in ~ on the right-hand side of eqn (38).
Note that eqn (38) with only quadratic terms in ~ C..ln be used to evaluate ". for small values
of ~ (~ :::; 0.5), otherwise substanti"ll errors are introduced. Sinee 1r!1'! is well above 0.5 for
most cases, it has been found necessary to include at least cubic terms in the expression
for /,,,. By negb:ting the term ds(N + I )~I .. the effective load tntnsfer length becomes
proportional to I' 2 as I ->'l.c with the proportionality constant depending only on ~ and
the number of breaks. The plot in Fig. 8, where I, is given for both the approximate and
the exact Laplace transform inversions, verifies that the power-law time dependence of If is
a good approximation ror large I. As ~ dccre,lses we have to go to higher values in I in
order for the power-law to be valid. The curves in Fig. 8 have slope ~!2 for large values of
time ,1Ild for a given value of:x there is a unique curve In (/r) vs In (I), within a translation
along the vertical axis, independent of the number of breaks. For example. the cor­
responding curves for three broken fibers can be obtained by translating the curves of Fig.
8 (valid for one break) in such a way that at the limit / -> 0 the curves predict the elastic Ir
for three broken fibers.

The asymptotic behavior or /'. given by eqn (38). which is obtained by using the
exact solution ror /,,, given by eqn (35). is compared with the asymptotic behavior of the
approximate solution. which is obtained by using Schapery's approximate method of
Lapbce inversion (eqn (89» and is given by

/,.(x, I) ~ I - t h", f" cos (mO) cos (/10) sin «(J!2) dO
m...,.U n

2 exp (-i':xj2) x v f" . ,+ -[r----l--'-,- -~, L h", cos (mO) cos (/10) SII1- (O!2) dO
(JC+I) • /'. ",~lJ II

(40)
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when:;' is Eukr's constant. Expansions (38) and (40) produce identical first-order terms if

exp(-;')=[f(I-:c2)] ex. HI)

\Ve indeed observe that exp (-~.) == 0.56. while [f( 1- :c/2)] ; x ranges between 0.44 and
0.54. for 0.5 < :c < 0.1. Schapery (1962) proposed the use of the value 0.5 instead of
exp (-;.) in eqn (89) because he found that it produces better results for most polymers.
In our numerical implementation we have used the value of [f( 1- :c/2)] : x instead of
exp (-~,) for the computation of the effective load transfer length (approximate) reported
in Fig. 8. The maximum error in the etlective load transfer length is 4.1 J!' 0 for :c = 0.3.
while for smaller values of:c the error is negligible (the approximate and the exact I, coincide
for:c = 0.2 and 0.1 in Fig, 8).

5. SEQUENTIAL FIBER·BREAKS

The solution technique presented in Section 2 remains the sume for the case when
pairwise tiber-breuks occur scquentially in time, triggered by some initial break in the Oth
liner at time I tl , The governing eqllutions and boundury and initial conditions for this case
arc eqns ( II)( I..i) with the exception of boundary conditions (12b) ftlr the broken libel'S.
whid! have to be nwdilied. Let I", 0 ~ fI ::; N, denote the time when libel'S II and -fl break,
i.e, I tl is the time of the initial bre<lk and I,v the time when the linal pair of lihers hreaks.
The hoUndary conditions for the (2N + I) broken libel'S beeome

wlll:n: 1/ is the Ilcaviside ster fUIll.:tion and the eonstanl eoellidenls q:;', 0::; lII.fI ::; N, arc
obtained using the norm<llized overloads predicted by the d<lstic solution, The superscript
III in c/;;' denotes the number of broken pairs of libel'S after time 1m (111 broken pairs
corresplHld to (2/1/ + I) broken libel'S) and before lhe nexl pair of bre<lks o<.:eurs. For a lixed
/1/ the V<lllieS of cl;' <Ire obtained from the rel'llion q:' = I',,(x = 0, I) - I as follows.

(a) Whcn the index fI <.:orresponds to a broken libel'. namely 0 ::; II ~ 111, !,,,(O. t) = O.
whereby c/:;' = - I.

(h) When the index 1/ <.:orresponds to a yet intact libel'. namely III < n ::; S.I',,(O. t) is
given by eqn (35). whi<.:h <.:oincides with the clasti<.: solution of Hedgepeth (1961) at x = 0
(1/(0, f, 0) = I in eqn (35». In parti<':lllar, q;;; .. I = Pm .. I (0, I) - I = I\m - I as given by eqn
(37), For example, considerthe special case with un initial break uti = 10 und two subsequent
hn:aks ut I I > 10, so that the tot;1I number of broken pairs is N = I, The values of q:;' are
q:: = - L tf'l

l = 1/3. tf,lj = - I. if: = - I (the vulue of c/: can be obtained from eqn (37), Le,
if'! = (II (x = O. t) - I = k'll - I = 4/3 - I) and cqn (42) becomes ihl'o!I'X = -11(1 -/0 ).

tll'lil'.\' = 1/311(1-/0 ) -4:311(1-/ 1 ),

By taking the Laplace tntnsrorm of eqn (42) and using cqn (24) to evaluate the Icli.­
hand side or eqn (42). a system of (N+ I) algebraic equations results for the unknown
functions h,~(s) :

I c"mh,~(s) = - rtf:: exp ( - foS) + (q,: -q::) exp ( - (IS) + (q,; -q,;)
m 0

'exp(-Ies)+"'+(q;~-if;' ')exp(-I"S)j, O::;II~N (43)

where c,,,,, arc constants given by
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en", = f sin (0/2) cos (nO) cos (mO) dO. 0 ~ n ~ I'll. (44)

In the case of II) = II = ... = 1,0; = O. eqns (43) reduce to eqns (23) with h: = hm • since only
q,> survive on the right-hand side of eqns (43) and their value is - I for 0 ~ II ~ N (all
overloads in the cluster are negative after time I,. as all N fiber pairs have been broken).
The solution for the axial load in the fibers and the shear stress in the matrix is given by

N :v

Polx./) = 1+ L L cn~,'[q?H(/-/I)Ii(x.I-/I).n.m)+(qi-q?)H(I-/,)
m=O 1=0

'/;(.'1:. I - I I. n. m) + ... + (q;o; - q,' - I )H«( - 1,)/;(x. (- t.v. n.m)] (45)

N V

ro(x.t)= - L L ("~il[q:'H(t-(n)9(X.I-(n.n.m)+(qi-(l)f{(t-(t>
",=0 i=U

where the functions Ii and !i are defined by

I;(x. (- (,.11. m) == f" hex. (- I,. 0) cos (mO) cos (nO) sin (0/2) dO (47)
n

.ci(x. ( - (,. fl. m) == f" !I(x. (- I,. 0) cos (mO)[cos (nO) - cos «n - I )0) I dO (4~)
II

where h(.\'. (.0) .lI1d .tI(x. I. 0) arc given in Appendix A for the power-law creep compliance
nllldd.

Even though the aoove solution is difrerent from the case of simultaneous breaks for
time ( ;': 10;. the large time behavior (t » I,v) is the same as if all bre.tks had occurred
simultaneously. To sec this assume that ("" 0 ~ m ~ N. arc .tll of O( I) and examine the
hchavior of eqns (47) and (48) as (-+ 00. As can be shown by considering thc asymptotic
expansion of the solution for the libel' loads (ellns (38»). I;(x. I - I" n.m) and I;(x. I - (,. n.m)
differ'from each otha by terms of 0[(1,- 1,)/I I .,~] for 0 ~ i.j ~ n. Similar 'Irguments hold
for fi(x. I - (,. n,m) as well. Neglel:ting these terms, eqns (45) and (46) redll\:e to

N N

p,,(x. t) = 1+ L L (',~,I cl';(x, (, n,m), (-+"1'"

m"" II ,- u

(4lJ)

ro(x. I) =
N N

" " ··1 v.( )~ ~ ('m, q; 9 x, I. n,m •
m~n , .. n

(-+ XJ. (50)

N

Noting that L ('"" Iq;V = - hIlI' we recover the results for the simult.ll1eous breaks given by
, .. u

eljns (35) and (36). This implies that small delays in the breaking of fibers will not aflect
the overiOild profiles of the intact fibers after a large time has elapsed (fading memory
matrix material).

6, TIlE SIIEAR·LAG FORMULATION FOR RELAXATION EXPERIMENTS

The shear-lag problem has been formulated primarily to explain the way in which the
intact fibers arc overloaded whenever breaks occur. The boundary conditions therefore arc
dictated by the fact that broken fibers cannot carry any load. A different phenomenon takes
place. however. when a relaxation experiment is performed. A possible model for such an
experiment (to be also called an indentation experiment) for a unidirectional composite is
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to assume that there are no tensile tractions in one end (i.e. P, = 0 at X -. X), whik the
fibers on the other end are clamped (i.e. U. = 0 at X = 0). except for a number of them on
which non-zero displacements are imposed.

If we assume for the time being that P, is not zero, the only ditference from the
formulation of Section 2 is boundary conditions (8b). which now become

It" = II~' == U~ ... (P~ HiGoAEB), Inj ~ N. x = 0, t > O. (51 )

Going exactly through the same steps as in the first section we end up having to solve an
algebraic system for the determination of the unknown coefficients a", of the form

"to am f cos (mO) cos (I/O) dO = It:,'.

The results for the axial fiber loads are

o~ 1/ ~ N. (52)

{I,,(X, I) = I - 2 i. lim f" L I:exp [ - 2 sin (0/2)J (s~?(s))xl ...!(s~?(s) )/s:
m=ll II

. sin (Oi2) cos (mO) cos (I/f) dO (53)

and for the pllwer-Iaw creep complialH.:e model introduced in Section .I they arc given by

\ f"{I,,(x, f) = 1-4 L lim !!(X, 1,0) sin (tJi2) cos (mO) cos (I/O) dO
", _ \I II

(54)

where ll(.r. I. 0) is given in Appendix A. The load {I" is plotted in Fig. 9. for the case of one

overload relaxatioll
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indented liber with II:: = 10. for the displaecd and its ~ldjacentliOcrs (1: = 0.1). Thc overload
relaxation in thc intact libcr is evidcnt as the indented liber relaxes its compressive load
with increasing time. The asymptotic cxpansion of clln (54) as 1 -- 'XJ is given by

I',,(x. t) ~ I - 2[r(l - 1:/2») I [r(l + 0:)] . I ~ .,1 ~ £ tim f" cos (mO) cos (nO) sin (0/2) dO
t m-() ()

sin ('lit) x.v I" . ,+4 .'., L tim cos (mO) cos (nO) sm- (Oj2) dO.
'lit 1 m ~ () II

(55)

Note th~lt for x = 0 the third term on the right-hand side of eqn (55) vanishes and the load
in the fibers relaxes as t ,~.

If the ~tpplied PI is lero. then a different nondimensionalization scheme is necessary
for II. and 1'•. By selecting the imposed U~ as a reference length. elln (51) is replaced by

II.=II::=U~/U~. Inl~N. x=O. 1>0 (56)

while the load 1'. is given by eqn (54) if p. is replaced by (1'. + I). and with the following
normalization for the load:

(57)

The result is then eqn (54) or eqn (55) with unity omitted and am obtained by solving eqn
(52). The curves for p. vs x look like those in Figs 9(a) and (b). except that the p.-axis is
shifted vertically so that the zero of the new axis corresponds to one of the old axis. Since
there is only one indented fiber in Figs 9(41) and (b). the displacement of that fiber U~ at
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x = 0 does not enter into the results of Figs 9(a) and (bL as it IS used for the non­
dimensionalization scheme.

7. CO:-';CLl'SIO~S

The viscoelastic constitutive behavior in shear of the matrix material has the following
implications in the time behavior of the stress fields near breaks in a unidirectional composite
under tension.

(I) The overload region in the intact fibers grows with time .md it grows In a self­
similar way for large times.

(2) The drective load transfer length grows as I' C for large times. where ;c is the
exponent of time in the power-law creep compliance function for the matrix.

(.3) The applied loads in an indentation experiment relax like I ,: for large times.

..1<'1(/(11111"''''<'111('111' ~~The authors would lik.: 10 .:xpr.:ss their gratitud.: to the review~r for his usd'ul sugg~slions.

,·spc...ially on rc\ising S<:,·ti,>n 5. This work was partly ..upport,'tl oy th... U.S. Army Res~ar...h Onk~ thmugh thc
MSlofCorndll'niwr..ity.
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A!'I'ENDIX A

rllr Ihe inversilln ofth~ Lapla\:e trans!"IIrms r~porkd in eqos (~9) and 1.101 a \:ontllur has oecn sdcekd around
I.ero ;tntl the negativ~ r~;tl ;tsis Oil the ~omplc.s pl;tin. (',"Ilour integratillll yields th\: fun\:tiol1s 1t(\.I."I ;tnd
Ifl \. 1.(1). wludl arc giwn hy

- ~!.~ f exp (-Ir) esp [ -;J(::) ...os (lrr;,p)Jsin [;.J(::) sin Crr;,p)
Crr;,p)J)(::)'~. (t\~1

The quantilie.. i.. I' ami 'p have the roll,'wing evaluatillos:



OH:rstn:ss profiks n.:ar brok.:n fibers in a composit.: with a viscodasti.: matri,

i, :: ~ sin (II ~lx

I' = ... :[r cos (:00 + rc:x+ 1)1' + [r' sin (:x1t1l::

65

I[ rsin(:x1t) J
IP = tan r cos (:x1t)+nx-+I) ,

APPE:--lDIX B

U < Ip < 1t. (.-\5)

SUprllSC w.: want III lind th.: function Iplt). if its Laplace transform <p(.v) is known. namdy we have to solve
thc' int.:gral ':4uatilln

Ip(S) = J" e\p (-S'Olp(,O d,/.
"

(BI)

If we lake the kth Ikrivatlve Ill' e4n (B I) with rcspcct to .I' and .:valuat.: it at .\' = (I. + e'l t, w.: gct the following
r.:sult:

d'IP/ 'J"" [,/(k+dJ' = ( -I) '/ ':.\1' - -~--- '1'(10 d,/.
d.\' ''''II, .. ,I, II I

lIy m;lking Ihc dlangc' of vari;L"lcs " = C'\p (1'/, t = "\1' (Ill. " t = ,'\1' (I' -II) = <:\1' (II') Ihe a"0'" equati"n redLh:es
II'

'\C' c'an pr"'e Ihal ,i, III) • ,if II') as I. -. 1 , where .i( II') is the I )Irac <leila fUIll'ti"n. The lert·h;1l1<1 Side Ill' eqn (11.11
lhc'rd"re heconles lhe fUIII.:tlon 'li(1I1 II'( t) in Ihe cas.: Ihat I. - 1 , Ihat IS

- Il'(k re'l" I (d',p)1
I " I ). • I, - I.A.f ll.\, -0. I, I'

Supp"se Ihat I,i( II rll) ,'an "e e.\pan<led in a Taylor series ahout Ihe poilll II'". namely

d,pl
Ip('I'+ld = Ip(II'" +111+ (11'-11',,)+'"

dl' ,_ .......
(115)

If the lirst lcrmln the <:.\pans,on is only retained, the 1l,lIo",ing result is o"tained arter su"stilution of .:«n (1151
inl" eqn (11.11, for any linite value of 1,:

( - I)' (' ; , I d'IP)/
I,?(I) = .\). .

k! \ d.\ '-HA. •• 1';\1'1",,11'

We c.ln improve Ihe a"OI': appro.\imation if we substitute e4n (115) into .:«n (11.11 and rCLluir.: the vanishing of
Ihe Inl"!:ral lhal e"rresponds to the sc'\:ond term in the e\pansion of Ip( II' + II) giv·.:n "y .:«n (115), th;lt is

J
" (I, hI"I d'PIe\p [(I. ,. I )1I'j <:.\1' [ - (I, + I'J e\p (11')1 (II' -II'"J <III' O.

k' dl' '_','.

The evalualion 1"'1' II'" that is derived from .:«n (117) is giv.:n "y

f' (k+d" I

II'" = • I, I ':\1' [(I, + 1)11" e\p [ - (I, + d <:\1' (11'1111' dll·.

(1171

In acc,'rd'lIle.: with Schap.:ry's appro\imatio" w.: select I, = O. W.: th.:" calculate from .:«n (Ill') thai
II'" = -;··-In (c), ",here;' is Eukr's consl.1l11. We arc still len with the freedom to dwose I', al1« on.: id.:a \\'(luld
"e III improve the aecur;lcy' of e4n (1l6) "y re4uiring th.: v;lIlishing of the secI>nd momenl resulting from the
'ec,'nd·order terms in Ihe <:.\ransil1l1 Ill' 'PI II' + II). a CllIlditio" that would li\ c. \Ve a\'(lid this here Iww':ler anJ
II': sekct (' = C\r I - ;.) so that II'" ".:cnmes lern, with eqn (R6) reducing to

SAS n: i-I!:



D. C. LAGOt:DAS <,I al.

q>(t) = [.wp(s)II •• ,,,., "'j ,.

Anoth.:r sdc:.:tion of c impli.:d by the lung time asymptotic behavior of <pIll is given in Se<:tion~.

APPENDIX C

(89)

The functions Ii,(n), ...• d,(n) appearing in eqn (31\) for the expression of the asymptotic behavior of the
loads P. along the fibers have the following e)(plidt evaluations:

",(n) i: nm f' cos (mO) cos (n/l) sin (/1'21 dll
m"",,) 0

d:(n) = 2[n 1- x'2)1 '[n I + xlI -,: i: b.. f' cos (mO) cos (nl/) sin: (11.2) dO
iff. if n

2 sin (vr) ,. f' ., ,
d,(n) = --- ~ n., cos (m/l) cos (,,1Il SIO (0./2) dO

:lit M.H n

4f(3x.2). • ,. ~ f'
d..VI) = "l-'r-t'--lln SIO (x1t/2*os' (x1tj2) - .1 sin' (X1tn)] 4.. /1m cos (mO) cos (,,(1) sin" (Oj2) dO

1t ( +% .." ... d 0

v f'",(n) = {r( 1-.h/2)1 '[to +xll"': L b,. cos (mOl cos (,,0) sin: (11/2) dll.
.., ... u U


